Hereditary hemorrhagic telangiectasia–related epistaxis: innovations in understanding and management
Nathan B. Sautter, MD and Timothy L. Smith, MD, MPH

Background: Epistaxis is the most common manifestation of hereditary hemorrhagic telangiectasia (HHT), affecting approximately 90% of patients at some point during their lifetime. Bleeding is chronic and varies from mild, self-limited episodes to severe, transfusion-dependent or life-threatening epistaxis. Treatment options vary from conservative, nonsurgical management to more aggressive surgical approaches. A number of treatment options have been introduced in recent years. There is little consensus in the literature regarding treatment algorithms. The objective of this investigation was to provide a contemporary review of HHT–related epistaxis, including pathophysiology, disease manifestations, and state-of-the-art treatment modalities.

Methods: A systematic review of the literature for HHT-related epistaxis was performed using the search terms “hereditary hemorrhagic telangiectasia” and “epistaxis.” Additional literature search regarding current recommendations for HHT evaluation and recent developments in genetic mechanisms, pathophysiology, and treatment of HHT was also performed.

Results: A total of 308 articles were identified and reviewed for appropriateness of inclusion whereas 64 articles met inclusion criteria. Treatment options range from topical and hormonal therapy to more aggressive surgical modalities. Most treatment descriptions are case series, with few randomized controlled trials. A number of new and novel therapies have been introduced in recent years.

Conclusion: HHT is a heterogeneous disease requiring multidisciplinary evaluation and treatment. Therapeutic options for HHT-related epistaxis vary from conservative, nonsurgical measures to more aggressive surgical treatments. A graduated treatment plan is recommended. Patients present with a wide degree in variation of severity of epistaxis, and treatment is best tailored to the individual patient. © 2012 ARS-AAOA, LLC.

Key Words: hemorrhagic disorders; hereditary; epistaxis; therapeutics; review; chronic disease

Hereditary hemorrhagic telangiectasia (HHT), also known as Osler-Weber-Rendu disease, is an autosomal dominant disease with an estimated prevalence of 1 in 5000,1 Nearly all HHT patients are prone to formation of multiple telangiectasias involving all aspects of the mucosa lining the nasal cavity. Consequently, recurrent spontaneous epistaxis is the most common presenting symptom of the disease. In a population-based study, 50% of patients developed recurrent epistaxis before the age of 20 years, and 96% of patients suffered from frequent nosebleeds at some point during their lifetime.2 Incidence, therefore, increases with age, and it is not uncommon for patients to present with increasingly severe epistaxis in the fourth or fifth decade without a prior diagnosis of HHT. Recurrent epistaxis often leads to iron-deficiency anemia as well as chronic crusting and nasal obstruction. Patients with HHT report a significant detriment to quality of life, which increases with the duration and frequency of epistaxis.3,4 In rare cases, the severity of epistaxis is life-threatening.

HHT–related epistaxis presents a treatment challenge to the otolaryngologist. The recurrent and chronic nature of the disease, as well as the wide variation in severity of bleeding should be considered prior to surgical treatment. Surgical options include potassium-titanyl-phosphate...
(KTP) laser ablation, coblation therapy, bipolar electrosurgery techniques, septodermoplasty, and Young’s procedure (nasal closure). There is a relative paucity of literature, however, addressing surgical treatment of HHT. Expert opinion guides most treatment decisions, and evidence-based treatment guidelines are largely lacking. The objectives of this review are to provide a background of the disease process from an otolaryngic perspective, and to evaluate contemporary treatment options, providing the advantages and disadvantages of each modality based upon the existing literature.

Diagnosis

Typically, patients are referred to the otolaryngologist for treatment of epistaxis following initial diagnosis. In rare instances, patients presenting with frequent and recurrent epistaxis will arrive without a prior diagnosis. Aside from intranasal telangiectasias, which commonly involve the septum and lateral nasal wall, other common manifestations of HHT include mucocutaneous telangiectasias involving the oral cavity and skin. Arteriovenous malformations (AVMs) involving the lungs, brain, gastrointestinal (GI) tract, and liver are less common, but may be associated with significant morbidity if left untreated. Approximately 15% to 50% of HHT patients harbor pulmonary AVMs, and cerebral vascular malformations are present in approximately 23% of patients. In contrast, 80% of HHT patients will exhibit telangiectasias in the gastric and small intestine mucosa, but only 25% to 30% of patients will develop symptomatic GI bleeding at some point in their life.

In 2000, publication of the Curacao Criteria established consensus clinical diagnosis based on the presence of several clinical criteria (Table 1). A “definite” diagnosis is made based on the presence of 3 or more criteria, and a “possible or suspected” diagnosis is made if 2 criteria are present. Diagnosis is “unlikely” if 1 or 0 criterion are present.

Pathophysiology

Endothelial dysfunction is the starting point in the pathogenesis of HHT. Dysfunction of the transforming growth factor (TGF)-β signaling pathway in vascular endothelial cells results in unregulated vessel wall remodeling within the mucosa and visera. This leads to loss of elastic elements, resulting in markedly dilated and convoluted post-capillary venules, which often connect directly to dilated arterioles. Mutations in the endoglin (ENG, HHT type 1) and activin receptor-like kinase 1 (ACVRL1, HHT type 2) genes are responsible for 90% of cases of HHT. In rare instances, mothers against decapentaplegic homolog 4 (MADH4) gene mutations lead to a combined clinical picture of juvenile polyposis and HHT. Two other HHT loci have been identified, but the specific genes have yet to be identified.

Genotype/phenotype correlations have been observed in so-called HHT1 (endoglin) and HHT2 (activin receptor-like kinase 1) patients. Patients with HHT1 experience epistaxis at an earlier age and have a higher frequency of pulmonary AVMs, whereas HHT2 patients are more likely to have hepatic involvement. Telangiectasias become more prominent with time, which mirrors the increase in severity of epistaxis. Due to expense and the wide variations in genetic mutations, routine diagnostic genetic testing is generally not recommended. Expert guidelines do recommend genetic testing of the index patient in order to identify the causative mutation in a family with confirmed HHT. Genetic testing is also indicated in relatives of a patient with known HHT for purposes of prenatal screening, and to establish a diagnosis in relatively asymptomatic relatives of a known HHT patient.

Evaluation

History

A careful medical history should be performed for all patients at the time of initial consultation. Frequency, length, and severity of nosebleeds should be documented. Inquiry should be made regarding frequency of ER visits, and need for prior blood transfusions. Documentation of the number of prior transfusions, as well as the time period between infusions aids in quantifying the severity of bleeding. Patients should be asked about the known presence of any pulmonary, intracranial or GI AVMs. Family history is nearly always positive for 1 or more first-degree family members with recurrent epistaxis and/or a diagnosis of HHT. A validated epistaxis severity scale for HHT-related epistaxis is available, and may be useful for following patients’ symptoms over time as well as response to treatment. While it is common for nosebleeds to slowly increase in severity with age, a more rapid increase in epistaxis frequency or severity warrants further evaluation, as it may herald the onset of high-output cardiac failure or formation of an intranasal AVM.

Physical exam

A complete examination of the upper aerodigestive tract should be performed during the initial visit. Patients will often present with significant crusting involving the
anterior nasal septum, and inferior turbinates. Examination in the office should proceed with caution due to the high risk of active bleeding during debridement of crusting and endoscopic examination.

Anterior rhinoscopy allows for visualization of telangiectasias arising from the anterior nasal septum, nasal vestibule, and inferior turbinates. Careful application of topical decongestants and anesthetics may aid in visualization. Soaking a cotton ball with a combination topical local anesthetic and decongestant such as lidocaine/oxymetazoline and placing it in the nose for several minutes allows for vasoconstriction and anesthesia while hydrating crusts and dry blood clots present in the nasal vestibule and anterior nasal septum. Gentle debridement of crusting and blood clots is often necessary to visualize the underlying mucosa, especially in patients with a history of septodermoplasty or scarring from prior epistaxis management. It is not uncommon for patients with multiple prior surgeries to present with septal perforation, which can also be a nidus for large crusts.

Endoscopic examination is best accomplished with a 2.9-mm 30-degree rigid nasal endoscope. This allows for magnified views of the inferior turbinates, septum, and middle turbinates. While they are typically most prominent along the anterior nasal septum, telangiectasias may be found throughout the sinonasal cavity. Appearance may vary from small, punctate lesions (Fig. 1) to large conglomerate telangiectasias (Fig. 2).

FIGURE 1. Endoscopic view of nasal cavity demonstrating a single, punctate telangiectasia on the right inferior turbinate. Note the presence of a large septal perforation.

FIGURE 2. Endoscopic view of the right nasal cavity demonstrating large conglomerations of telangiectasias involving the inferior turbinate, head of the middle turbinate, and septum.

Laboratory testing and imaging

Laboratory testing prior to any surgical intervention is generally recommended (Table 2). A recent hemoglobin level and hematocrit should be available. Patients who are severely anemic may be typed and crossed for potential blood transfusion. Patients who undergo regular blood transfusions may opt to have transfusion just prior to the procedure in anticipation of blood loss. HHT patients are often iron deficient, requiring regular iron infusions. A “baseline” hemoglobin level is helpful for future reference. This level varies widely among patients, and in our experience averages around 10 to 11 g/dL. Close follow up and communication with the hematologist or primary care physician is important.

Expert recommendations for screening of GI, pulmonary, and cerebral AVMs are based upon the Curacão Criteria. Current recommendations dictate that patients with possible or confirmed HHT undergo transthoracic contrast echocardiography at the time of diagnosis and once every 5 to 10 years thereafter. Screening for pulmonary AVMs is also recommended for purposes of prenatal testing. Patients over the age of 35 years are recommended to undergo annual hemoglobin and hematocrit monitoring. Endoscopic evaluation of the upper and lower digestive tracts is indicated in patients presenting with anemia disproportionate to the degree of epistaxis. Current recommendations also include screening brain magnetic resonance imaging (MRI) at the time of diagnosis in patients with possible or definite HHT to rule out the presence of cerebrovascular malformations.

Treatment

A stepwise approach to treatment is recommended (Table 3). Severity of bleeding and tolerance for epistaxis varies widely among HHT patients, and treatment should be tailored based on patient goals and expectations. Physician and patient collaboration in developing a strategy geared toward reducing epistaxis to a tolerable level often leads to best outcomes.

The following sections will evaluate management options for HHT-related epistaxis. Medical therapies include hydrating saline gels, nasal emollients, and topical or systemic estrogen, among others. Surgical options include laser photocoagulation, bipolar cautery, and coblation therapy, among others. Though still commonly used, use of silver nitrate...
TABLE 3. Treatment options for HHT-related epistaxis

<table>
<thead>
<tr>
<th>Indications</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Level of evidence</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topical therapies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tranexamic acid gel</td>
<td>Mild epistaxis</td>
<td>Commonly used blood loss preventative due to its antifibrinolytic effects</td>
<td>Single case series (Level IV)</td>
<td>Tibbelin et al.24</td>
</tr>
<tr>
<td>Estrogen cream</td>
<td>Mild epistaxis</td>
<td>No systemic effects as compared to oral administration, ease of application</td>
<td>Single randomized placebo controlled trial (Level II)</td>
<td>Vase28</td>
</tr>
<tr>
<td>Mupirocin ointment</td>
<td>Mild epistaxis</td>
<td>Decreased crusting and bacterial colonization</td>
<td>Single randomized placebo controlled trial (Level II)</td>
<td>Kubba et al.25</td>
</tr>
<tr>
<td>Bevacizumab (topical application)</td>
<td>Mild to moderate epistaxis</td>
<td>Ease of application, low risk of adverse reaction</td>
<td>Prospective, randomized placebo controlled multi-institutional trial is ongoing, (Level I, pending)</td>
<td>HHT Foundation38 (James Gossage)</td>
</tr>
<tr>
<td>Local therapies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bevacizumab (mucosal injection)</td>
<td>Moderate to severe epistaxis</td>
<td>May provide additional benefit when combined with surgical treatment</td>
<td>Single case series (Level IV)</td>
<td>Kamezis and Davidson30</td>
</tr>
<tr>
<td>Sclerotherapy</td>
<td>Mild or moderate epistaxis</td>
<td>In-office procedure</td>
<td>Single case series (Level IV)</td>
<td>Boyer et al.29</td>
</tr>
<tr>
<td>Surgical cautery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bipolar cautery</td>
<td>Mild to moderate epistaxis</td>
<td>Readily available, may be combined with laser photocoagulation</td>
<td>Single case series (Level IV)</td>
<td>Ghaheri et al.42</td>
</tr>
<tr>
<td>KTP laser</td>
<td>Moderate to severe epistaxis</td>
<td>Useful for smaller, punctate lesions, very precise</td>
<td>Few case series (Level IV)</td>
<td>Kamezis and Davidson30, Harvey et al.44</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>TABLE 3. Continued</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Indications</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>Nd:YAG laser</td>
</tr>
<tr>
<td>Coblation</td>
</tr>
<tr>
<td>Other surgical</td>
</tr>
<tr>
<td>Young’s procedure</td>
</tr>
<tr>
<td>Systemic therapies</td>
</tr>
</tbody>
</table>

FDA = U.S. Food and Drug Administration; HHT = hereditary hemorrhagic telangiectasia; OR = operating room.
HHT–related epistaxis

cautery is generally not recommended in most cases because it is often inadequate, imprecise, and understudied.21

Preventive measures
Little evidence is available regarding conservative measures for HHT-related epistaxis, or for conservative management of epistaxis in general.22 Patients with HHT will often develop their own techniques for maintenance and prevention of nosebleeds and much can be learned from their personal successes. There are numerous nasal sprays, gels, ointments, and emollients available over the counter that are associated with minimal risk from long-term use. There is no evidence available to recommend any 1 humidification/emollient treatment over another.5 The underlying theme in terms of epistaxis prevention, however, is nasal hydration. Drying and crusting of the nasal mucosa secondary to repeated trauma, bleeding, scarring, and inflammation is a significant issue with HHT patients, and patients should be counseled regarding a regular nasal hygiene regimen aimed at preventing desiccation of the mucous membranes with subsequent buildup of crusting.

Helpful suggestions may include installation of a humidifier in the bedroom, particularly during cold and dry weather when risk of epistaxis is more prominent. Saline gels formulated with hyaluronic acid are more effective and longer lasting than saline nasal sprays in terms of maintenance of nasal hydration.23 Tranexamic acid nasal gels have been proposed by some authors, and may be available through compounding pharmacies.24 Topical formulations with antimicrobial activity, such as mupirocin, may be helpful in reducing crusting and bacterial colonization.25 Some patients prefer petroleum products, although data regarding the risk of long-term use with possible pulmonary sequelae is lacking.26 Frequent and liberal application of topical agents is key to successful epistaxis prevention.

Some patients may tolerate gentle nasal saline irrigations using a squeeze bottle, piston syringe, or Neti pot. Irrigations help prevent buildup of crusting deeper within the nasal cavity where other topical formulations may be less effective. Many patients do not tolerate saline irrigations, as the act of irrigation may be an instigating factor for epistaxis.

Medical management
There has been significant recent interest in the medical management of HHT-related epistaxis. Specifically, advances in treatment with bevacizumab (Avastin, Genentech, San Francisco, CA), are promising. Other medical treatments include estrogen and sclerotherapy.27–30

Increasing interest has been seen regarding treatment with estrogen, estrogen modifiers, and estrogen antagonists for HHT-related epistaxis. Raloxifene, a selective estradiol receptor modulator (SERM) much like tamoxifen, has been shown to increase expression of endoglin and activin receptor-like kinase 1 (ALK1), thus helping to counter haploinsufficiency at the level of the endothelium.31 In a prospective study of 19 postmenopausal women with HHT-related epistaxis treated with raloxifene, Albina na et al.31 noted a significant decrease in severity and frequency of bleeding as measured by a questionnaire. In 2004, Jameson and Cave32 reported 2 cases of dramatic improvement in HHT-related epistaxis in postmenopausal women treated with tamoxifen. Subsequently, in a randomized, prospective, placebo-controlled study of 21 men and women with HHT-related epistaxis, tamoxifen treatment was associated with decreased severity and frequency of bleeding as measured by questionnaire and endoscopic examination. Additionally, hemoglobin levels rose during treatment in approximately 20% of patients.33 It is worth noting that women treated with unopposed estrogen therapy are at increased risk for endometrial cancer, and may be at higher risk for breast cancer and ovarian cancer with long-term estrogen replacement therapy.

In a randomized, placebo-controlled double-blind study evaluating topical estrogen treatment for HHT-related epistaxis, improvement in subjective epistaxis was observed, but no significant changes in hemoglobin levels were seen.28 In a separate study evaluating argon laser photocoagulation followed by topical estriol application, Sadick et al.34 noted significant decrease in frequency and intensity of bleeding as reported by patient questionnaire, as compared to argon laser treatment followed by topical dexamethasone ointment application. Electron microscopy of nasal tissue in patients undergoing topical estriol treatment demonstrated squamous metaplasia of the respiratory epithelium.

Office-based sclerotherapy has been proposed recently as a treatment alternative for HHT-related epistaxis. Boyer, et al.29 describe a series of 7 patients who were treated in the office setting using intrallesional injections of sodium tetradecyl sulfate (STS). The average period of time between treatments was 3.1 months, and patients underwent an average of 5 treatments. There were no complications reported, and all patients noted improvement in epistaxis as reported by questionnaire. Unfortunately, no further descriptions of sclerotherapy for HHT-related epistaxis exist outside of this small case series.

Recently, much interest has surrounded the use of bevacizumab (Avastin), a monoclonal antibody inhibitor of the vascular endothelial growth factor (VEGF)-A receptor, for treatment of HHT-related epistaxis. Rationale for treatment is based on the fact that elevated plasma levels of VEGF are present in patients with HHT.35 Several authors have noted improvement in anemia and cardiac output following intravenous bevacizumab therapy in HHT. Brinkerhoff et al.36 present a case report of a 55-year-old woman with HHT with a rise in severity of epistaxis as a result of chemotherapy treatment, progressing to the point of transfusion dependence. She responded favorably to several intravenous (IV) infusions of bevacizumab with temporary cessation of epistaxis altogether. This was followed by regular treatments with topical intranasal bevacizumab. The authors noted that topical treatments resulted in excellent control of epistaxis for at least 8 weeks at a time.

Several recent studies have investigated the safety and efficacy of topical and/or injected intranasal bevacizumab treatment in patients with HHT-related epistaxis. Use of bevacizumab is limited by cost, which is greater than $700 per vial, and is unlikely to garner reimbursement from medical insurance. Chen et al.37 treated 52 patients with either submucosal injections or topical spray application of bevacizumab (doses ranging from 25-100 mg per treatment), many cases in conjunction with KTP laser photocoagulation. Patients were sent questionnaires in follow-up ranging from 1.5 to 46 months. Five patients (10%) sustained a septal perforation, but no other significant adverse effects were noted. It was noted that all patients who developed a septal perforation had undergone bevacizumab submucosal injection in the cartilaginous septum. Once this was recognized, no further injections in the cartilaginous septum were performed, and no additional patients developed septal perforation. Further follow-up in 32 patients revealed significant improvement in epistaxis as measured by the ESS.30

While it remains a promising treatment, long-term data regarding topical bevacizumab treatment is lacking. Currently, a double-blinded, placebo-controlled multi-institutional trial evaluating topical bevacizumab nasal spray vs topical estrogen spray (North American Study of Epistaxis in HHT, or NOSE study) is underway.38 Safety and stability of long-term storage of bevacizumab in benzalkonium chloride solution for nasal spray application has been established.39 Further study is ongoing.

Thalidomide is another antiangiogenic agent that has been used in the treatment of HHT-related epistaxis. Thalidomide is believed to exert its effects by modulating components of the VEGF pathway and acting upon endothelial tip cells of immature vessels. The only description of its use in the literature comes as a small case series as reported by Lebrin et al.40 Seven patients with severe, recurrent, HHT-related epistaxis were treated with 100 mg daily oral thalidomide. Six of the patients experienced lowered frequency of epistaxis during the course of treatment, and 5 patients experienced an increase in hemoglobin concentration. Four patients with prior regular transfusion requirements did not require any transfusions during the treatment period. It should be noted that use of thalidomide is limited by its well-described teratogenic effects.

Surgical management techniques

Surgical management for HHT-related epistaxis runs the gamut from nasal packing, which is useful as a temporizing measure prior to more formal endonasal treatments such as telangiectasia ablation, progressing to partial septectomy, septodermoplasty, and nasal closure (Young’s procedure). The surgical technique should be tailored to the individual patient and severity of bleeding, and a stepwise approach starting with less aggressive treatments progressing to more invasive techniques is recommended.20

One of the most common long-term consequences of surgical therapy is septal perforation.41 The use of monopolar electrocautery and silver nitrate have been associated with an increase in the incidence of septal perforation, though any surgical manipulation of the septal mucoperichondrium could result in increased risk of perforation.21 Regardless of the chosen technique, care should be taken to avoid injury to the underlying perichondrium when treating telangiectasias of the cartilaginous nasal septum, if possible. Some surgeons endorse staggered unilateral treatments to help reduce the risk of perforation; however, bilateral surgery is appropriate as long as care is taken to avoid injury to opposing areas of the cartilaginous septum.42

Bipolar electrocoagulation

Bipolar electrocoagulation of intranasal telangiectasias is a widely available treatment for HHT-related epistaxis. However, only 1 retrospective case series exists in the literature. Ghaheri et al.42 describe a series of 18 patients undergoing 42 bipolar treatments for HHT-related epistaxis using the Landolt bipolar coagulator (B. Braun Medical Inc., Bethlehem, PA). One-half of the treatments were performed in conjunction with laser photocoagulation. No complications were noted, including synechia formation or septal perforation. The authors conclude that the bipolar is useful both as an adjunct to laser therapy, as well as a stand-alone technique, especially in cases where larger, conglomerate telangiectasias are present.

Laser photocoagulation

Several forms of laser photocoagulation have been described in the treatment of HHT-related epistaxis, including the argon laser (variable wavelength), the potassium titanyl phosphate (KTP) laser (585 nm), and the neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (1064 nm).34,43–49 Advantages of laser therapy include the potential for precise treatment of telangiectasias in a “rosette” fashion with minimal injury to the adjacent normal mucosa, as well as minimal depth of thermal injury. Use of standard laser precautions including wet towel drapes and moist eye pads to protect the patient’s skin and eyes is recommended.50 Access to laser technology may be limited at some centers due to cost and/or lack of available equipment.

The largest case series for patients undergoing laser treatment of HHT-related epistaxis was described by Harvey et al.44 One hundred and thirty-one patients underwent 268 KTP laser treatments over a 60-month period. The majority of patients required 3 or fewer procedures. The mean time interval between treatments was 473 days, and the authors note that the benefits of KTP laser treatment are time-limited. Karnezis and Davidson30 report a series of 12 HHT patients treated concomitantly with the KTP laser and submucosal bevacizumab with significant reduction in postoperative bleeding as measured by the epistaxis severity score. Septal perforation was reported as a complication, but only in patients who underwent injection of bevacizumab into the cartilaginous septum.30
Several retrospective case series have been published describing use of the Nd:YAG laser for HHT-related epistaxis. Kuhnel et al. describe a series of 30 patients undergoing treatment with significant decrease in the frequency of bleeding postoperatively. Multiple treatments were performed at individually appointed time periods, but the authors did not specify the average amount of time between treatments. Mahoney and Shapshay describe a retrospective series of 40 patients undergoing Nd:YAG laser treatment. The authors describe 3 different vascular patterns, and found that patients with isolated, punctate lesions or large solitary malformations fared better with laser treatment, whereas patients with diffuse, conglomerate lesions responded better to treatment with septodermoplasty. As compared to the KTP laser, the Nd:YAG laser has a greater depth of penetration resulting in increased scarring and fibrosis.

Reports of the argon laser for treatment of HHT-related epistaxis are limited. Hitchings et al. describe a series of 15 patients undergoing treatment. The authors did not observe any significant change in bleeding following the procedure.

Coblation

Recently, the coblation wand was approved by the U.S. Food and Drug Administration (FDA) for use in the nasal cavity (Fig. 3). Coblation technology utilizes low-heat plasma energy to ablate and cauterize telangiectasias. There are currently no published studies evaluating use of the coblator for treatment of HHT-related epistaxis, and only 1 preliminary report is available. In this series, the surgeons reported a higher degree of ease of use with the coblation wand as compared to the KTP laser. The authors also noted other advantages of the coblator over laser treatment, such as an increased level of operating room (OR) safety and a higher degree of availability. Early data suggests improved patient satisfaction with coblation treatment as compared to the laser. Further study is ongoing.

Septodermoplasty

Septodermoplasty (SDP) was first described by Saunders in 1960. This technique involves removal of the mucosa overlying the anterior one-half of the nasal septum with preservation of the underlying perichondrium, followed by placement of a split-thickness skin graft or buccal mucosal graft. This may also be performed in conjunction with removal of the inferior turbinates with extension of the graft onto the lateral nasal wall, as described by Ross and Nguyen. Few case series exist describing authors’ experience with the technique in patients with moderate to severe HHT-related epistaxis. Harvey et al. describe a series of 33 patients undergoing SDP, resulting in greater than 50% reduction in need for subsequent laser treatments over a 60-month time period. Lesnik et al. describe a series of 9 patients undergoing partial septectomy with SDP for severe transfusion-dependent HHT-related epistaxis. Treatment resulted in significant improvement in quality of life (QOL) as well as significant reduction in transfusion requirements. Patients should be counseled that SDP will result in some loss of normal mucociliary function within the anterior nasal cavity, resulting in chronic crusting. This may be obviated by maintenance of a daily nasal hygiene regimen. Also, SDP results are generally not permanent because vessel regrowth into or surrounding the graft with reformation of telangiectasias occurs within 2 years, which may result in the need for revision procedures.

Nasal closure

Young’s procedure, or closure of the anterior nares, was first described for treatment of chronic crusting related to atrophic rhinitis. This procedure was revisited for the treatment of HHT-related epistaxis by Gluckman and Portugal in a case series of 3 patients, and subsequently by Hosni and Innes in 2 patients. Lund and Howard describe a series of 12 patients undergoing nasal closure for severe HHT-related epistaxis. Eleven of 12 patients reported complete cessation of bleeding; the remaining patient underwent unilateral nasal closure and experienced continued epistaxis from the open nostril. The authors note that unilateral closure is an option in patients without septal perforation who present with severe unilateral epistaxis. The technique involves raising skin and mucosal flaps either through an endonasal approach or via an alotomy incision for increased exposure. The flaps are closed in a double-layered fashion, allowing for complete closure of the nares. Elimination of airflow through the nasal cavity reportedly results in complete elimination of epistaxis. However, this technique also results in complete nasal obstruction requiring obligatory mouth-breathing, as well as loss of olfaction. Use of a silastic nasal obturator has been described by some authors as an alternative to permanent nasal closure, thus providing a reversible alternative to complete loss of nasal function. Based on the literature, nasal closure is an effective treatment for severe life-threatening or transfusion-dependent epistaxis in select patients when other treatments such as ablation or septodermoplasty are inadequate or unsuccessful. A recent case report described severe life-threatening epistaxis in a patient despite prior nasal closure.

FIGURE 3. Endoscopic view of the left nasal cavity demonstrating the tip of the coblator wand as the surgeon is preparing to ablate a telangiectasia on the inferior turbinate. Note the areas previously cauterized on the inferior turbinate and head of the middle turbinate.
Management in this case required endovascular therapy and ultimate reopening of the nares for surgical management of the epistaxis (the information is currently being presented at COSM (Combined Otolaryngology Spring Meeting) in San Diego. It is poster #1-154, Author is Jonathon Ting).

Endovascular embolization

Endovascular treatment for HHT-related epistaxis has been described; however, only a limited number of small, retrospective studies have been published in the last 20 years. Layton et al.\(^6\) describe a series of 12 patients with HHT-related epistaxis treated with endovascular embolization. As compared to patients with idiopathic nosebleeds, HHT patients required more frequent re-embolization and surgical treatments. Also, 69% of patients with HHT had significant mucosal contributions from the ethmoidal branches of the ophthalmic artery as compared to 9% of patients with idiopathic bleeding. This may be due to the likelihood that the majority of patients with non-HHT epistaxis presenting for embolization therapy are bleeding from branches of the sphenopalatine artery, whereas patients with HHT-related epistaxis tend to present with anterior epistaxis from the region of Kiesselbach’s plexus. A separate study by Braak et al.\(^6\) described 12 patients with HHT-related epistaxis who underwent percutaneous embolization treatment. An improvement in the duration between episodes of epistaxis was noted up to 1 year following embolization. A significant drawback to endovascular embolization therapy is the inability to treat the anterior and posterior ethmoid artery branches due to high risk of stroke and blindness. These risks often overshadow the potential advantages of endovascular therapy over more traditional surgical approaches; ie, avoidance of general anesthetic and nasal instrumentation. Therefore, endovascular embolization treatment for HHT-related epistaxis is rarely indicated over more standard surgical approaches.\(^6\)

Follow-up

Close follow-up is recommended for patients undergoing surgical as well as more conservative treatment measures. Counseling regarding the chronic and progressive nature of the disease is helpful for patients to understand the need for ongoing maintenance therapy designed to prevent nasal dryness and crusting. Patients may also require frequent clinic visits for endoscopic debridement if crusting is more severe. Additional surgical treatments may become necessary when the degree of bleeding is severe enough to interfere with daily activities, or when bleeding is felt to contribute to anemia or need for blood transfusions. Procedures may be required every several months or every few years depending on the severity of the disease and the chosen surgical modality.

Conclusion

Epistaxis is the most common symptom of HHT. A number of therapies are available, ranging from conservative, nonsurgical measures to surgical treatments such as electrosurgery, laser photoagulation, and septodermoplasty. HHT patients present with varying degrees of severity of epistaxis, and a graduated treatment plan is suggested, beginning with more conservative techniques. Invariably, recurrent bleeding secondary to reformation of telangiectasias occurs at some point following treatment, except in patients undergoing complete nasal closure in whom results appear to be mostly permanent. A multidisciplinary team approach involving pulmonary and hematology specialists is helpful for evaluation and treatment of other manifestations of the disease, such as multiorgan system AVMs and chronic anemia. Treatment is best tailored to the individual patient, and close follow-up and counseling is necessary given the chronic nature of the disease. Additional updates regarding advances in HHT therapy, patient resources, and other HHT-related information are available through the nonprofit HHT Foundation (http://www.hht.org).

References

